Efficient Collision Detection of Complex
Deformable Models using AABB Trees

GINO VAN DEN BERGEN

Department of Mathematics and Computing Science
Eindhoven University of Technology
P.O. Box 513, 5600 MB Eindhoven
The Netherlands
E-mail: gino@win.tue.nl

November 6, 1998

Abstract

We present a scheme for exact collision detection betwemplex mod-
els undergoing rigid motion and deformation. The schemesealn a hier-
archical model representation using axis-aligned bountoxes (AABBS).
In recent work, AABB trees have been shown to be slower théanted
bounding box (OBB) trees. In this paper, we describe a wayeed up
overlap tests between AABBS, such that for collision débdeodf rigid mod-
els, the difference in performance between the two reptatens is greatly
reduced. Furthermore, we show how to quickly update an AARB &s a
model is deformed. We thus find AABB trees to be the method ofagh
for collision detection of complex models undergoing defation. In fact,
because they are not much slower to test, are faster to lanld,use less
storage than OBB trees, AABB trees might be a reasonableelfoi rigid
models as well.

Keywords. computer animation, collision detection, hierarchicaladstruc-
tures, deformable models

www.manaraa.com

1 Introduction

Hierarchies of bounding volumes provide a fast way to penfexact collision
detection between complex models. Examples of volume tipsare used for
this purpose are spheres [8, 5], oriented bounding boxe8&PR], and discrete-
orientation polytopes (DOPs) [6, 12]. In this paper, we presa collision detec-
tion scheme that relies on a hierarchical model representasing axis-aligned
bounding boxes (AABBs). In the AABB trees as we use them, thweb are
aligned to the axes of the model’s local coordinate systhuos,tall the boxes in a
tree have the same orientation.

In recent work [4], AABB trees have been shown to yield a w@esgormance
than OBB trees for rigid models. In this paper, however, wespnt a way to
speed up overlap testing between relatively oriented bokes pair of AABB
trees. This results in a performance for the AABB tree thatlase to the OBB
tree’s performance for collision detection of rigid models

Furthermore, we show how to quickly update an AABB tree as dehe
deformed. Updating an AABB tree after a deformation is cdesably faster than
rebuilding the tree, and results in a tight-fitting hierarai boxes for most types
of deformations. Since updating an OBB tree is significanttyre complex, we
find AABB trees to be the method of choice for collision dei@ttof complex
models undergoing deformation. In fact, because they aremuch slower to
test, are faster to build, and use less storage than OBB #&d3B trees might
be a reasonable choice for rigid models as well.

In comparison to a previous algorithm for deformable mogekssented in
[10], the algorithm presented here is expected to perforttebér deformable
models that are placed in close proximity. For these cas#h,dlgorithms show
a time complexity that is roughly linear in the number of pitices. However,
our approach has a smaller constant (asymptoticly 48 aetitcnoperations per
triangle for triangle meshes). Moreover, our algorithmester suited for collision
detection among a mix of rigid and deformable models, sihég linear in the
number of primitives in the deformable models only.

The C++ source code for the scheme presented here is released ad teat
Software Library for Interference Detection (SOLID) vensi2.d.

linformation on how to obtain the completet® source code and documentation for
SOLID 2.0 is available atttp://www.acm.org/jgt/papers’'vanDenBergen98.

www.manaraa.com

2 Buildingan AABB Tree

The AABB tree that we consider is, as the OBB tree describgd]ina binary
tree. The two structures differ with respect to the freeddmplacement of the
bounding boxes: AABBs are aligned to the axes of the modetallcoordinate
system, whereas OBBs can be arbitrarily oriented. The aftdedom of an OBB

is gained at a considerable cost of storage space. An OBBisgented using
15 scalars (9 scalars for ax33 matrix representing the orientation, 3 scalars for
position, and 3 for extent), whereas an AABB only requires@a's (for position
and extent). Hence, an AABB tree of a model requires rouglaly &s much
storage space as an OBB tree of the same model.

An AABB tree is constructed top-down, by recursive subdois At each
recursion step, the smallest AABB of the set of primitivesasnputed, and the
set is split by ordering the primitives with respect to a waibsen partitioning
plane. This process continues until each subset contam&lement. Thus, an
AABB tree for a set oh primitives has leaves anch — 1 internal nodes.

At each step, we choose the partitioning plane orthogontdédongest axis
of the AABB. In this way, we get a ‘fat’ subdivision. In genértat AABBS, i.e.,
cube-like rather than oblong, yield a better performancentarsection testing,
since under the assumption that the boxes in a tree mutuadigfap as little as
possible, a given query box can overlap fewer fat boxes thiarbioxes.

We position the partitioning plane along the longest axyscloosings, the
coordinate on the longest axis where the partitioning platesects the axis. We
then split the set of primitives into a negative and positubset corresponding
to the respective halfspaces of the plane. A primitive isgifeed as positive if
the midpoint of its projection onto the axis is greater tlhaand negative other-
wise. Figure 1 shows a primitive that straddles the partitig plane depicted by
a dashed line. This primitive is classified as positive. tt ba seen that by using
this subdivision method, the degree of overlap between tABBs of the two
subsets is kept small.

For choosing the partitioning coordinaieve tried several heuristics. Our ex-
periments with AABB trees for a number of polygonal modelewéd us that, in
general, the best performance is achieved by simply chga@sio be the median
of the AABB, thus splitting the box in two equal halves. Usthgs heuristic, it
may takeO(n?) time in the worst case to build an AABB tree forprimitives,
however, in the usual case where the primitives are digegtbmore or less uni-
formly over the box, building an AABB tree takes on@¥(nlogn) time. Other
heuristics we have tried, that didn't perform as well, aed:qubdividing the set of

3

www.manaraa.com

min o mid max

Figure 1: The primitive is classified as positive, since iigpoint on the coordi-
nate axis is greater than

primitives in two sets of equal size, thus building an optignbalanced tree, and
(b) building a halfbalanced tree, i.e., the larger subsat imost twice as large as
the smaller one, and the overlap of the subsets’ AABBs ptegeonto the longest
axis is minimized.

Occasionally, it may occur that all primitives are classifie the same side of
the plane. This will happen most frequently when the set whipives contains
only a few elements. In this case, we simply split the set mdubsets of (almost)
equal size, disregarding the geometric location of the pives.

Building an AABB tree of a given model is faster than buildizig OBB tree
for that model, since the estimation of the best orientadiban OBB for a given
set of primitives requires additional computations. Wefdthat building an OBB
tree takes about three times as much time as building an AA8& &s is shown
in Section 5.

3 Intersection Testing

An intersection test between two models is done by recuksiesting pairs of
nodes. For each visited pair of nodes, the AABBs are testeovierlap. Only the
nodes for which the AABBs overlap are further traversed.offonodes are leaves
then the primitives are tested for intersection and thelrediuthe test is passed

www.manaraa.com

back. Otherwise, if one of the nodes is a leaf and the othentamial node, then
the leaf node is tested for intersection with each of thedecéii of the internal
node. Finally, if both nodes are internal nodes then the mattesmaller volume
is tested for intersection with the children of the node tfitl larger volume. The
latter heuristic choice of unfolding the node with the lagelume results in the
largest reduction of total volume size in the following AAB&sts, thus the lowest
probability of the following tested boxes overlapping.

Since the local coordinate systems of a pair of models maytigaxily ori-
ented, we need an overlap test for relatively oriented boxefast overlap test
for oriented boxes is presented by Gottschalk in [4]. We véfer to this test
as theseparating axes test (SAT). A separating axis of two boxes is an axis for
which the projections of the boxes onto the axis do not operldne existence of
a separating axis for a pair of boxes sufficiently classifiestioxes as disjoint.
It can be shown that for any disjoint pair of convex three-glrsional polytopes
a separating axis can be found that is either orthogonal axet fof one of the
polytopes, or orthogonal to an edge from each polytope [3]is Tesults in 15
potential separating axes that need to be tested for a paiiesfted boxes (3 facet
orientations per box plus 9 pairwise combinations of edgections). The SAT
exits as soon as a separating axis is found. If none of the &8 separate the
boxes, then the boxes overlap.

We refer to the original paper for details on how the SAT is liempented
such that it uses the least number of operations. For thewolg discussion,
it is important to note that this implementation requires tklative orientation
represented by a 8 3 matrix, and its absolute value, i.e., the matrix of absolut
values of matrix elements, to be computed before perforrtiedl5 axes tests.

In general, testing two AABB trees for intersection reqaineore box overlap
tests than testing two OBB trees of the same models, sincathéest AABB of
a set of primitives is usually larger than the smallest OBBwidver, since each
tested pair of boxes of two OBB trees normally has a differetdtive orienta-
tion, the matrix operations for computing this orientatemd its absolute value
are repeated for each tested pair of boxes, whereas for AA8&s tthe relative
orientation is the same for each tested pair of boxes, amglribads to be com-
puted only once. Therefore, the performance of an AABB treghtmot be as bad
as we would expect. The empirical results in Section 5 sha thy exploiting
this feature, intersection testing using AABB trees ugutakes only 50% longer
than using OBB trees in cases where there is a lot of overlapgrthe models.

For both tree types, the most time consuming operation inintte¥section
test is the SAT, so let us see if there is room for improvemé&wé found that,

5

www.manaraa.com

25%

EOBB tree
B AABB tree

20%

15% -

10% -

5% 4

0% -+

Figure 2: Distribution of axes on which the SAT exits in ca$éhe boxes being
disjoint. Axes 1 to 6 correspond to the facet orientationthefboxes, and axes 7
to 15 correspond to the combinations of edge directions.

www.manharaa.com

in the case where the boxes are disjoint, the probabilityhef $AT exiting on
an axis corresponding to a pair of edge directions is abou. 1Bigure 2 shows
a distribution of the separating axes on which the SAT exitddsts with a high
probability of the models intersecting. Moreover, for btsth OBB and the AABB
tree we found that about 60% of all box overlap tests resuttedpositive result.
Thus, if we remove from the SAT the nine axis tests correspuntb the edge
directions, we will get an incorrect result only 6% (40% ofAapof the time.

Since the box overlap test is used for quick rejection of stgef primitives,
exact determination of a box overlap is not necessary. Uaibgx overlap test
that returns more overlaps than there actually are, regsultsore nodes being
visited, and thus more box overlap and primitive intersactests. Testing fewer
axes in the SAT reduces the cost of a box overlap test, butasels the number
of box and primitive pairs being tested. Apparently, thera trade-off of per-test
cost against number of tests, when we use a SAT that tests fews.

In order to examine whether this trade-off is in favor of therfprmance, we
repeated the experiment using a SAT that tests only the st farientations.
We refer to this test as th®AT lite. The results of this experiment are shown in
Section 5. We found that the AABB tree’s performance benéfit a cheaper
but sloppier box overlap test in all cases, whereas the O88ghows hardly any
change in performance. This is explained by the higher dostmx overlap test
for the OBB tree due to extra matrix operations.

4 AABB Treesand Deformable Models

AABB trees lend themselves quite easily to be used for dedbtermodels. In
this context, a deformable model is a set of primitives inahhithe placements
and shapes of the primitives within the model’s local cooate system change
over time. A typical example of a deformable model is a triangesh in which
the local coordinates of the vertices are time-dependent.

Instead of rebuilding the tree after a deformation, it isallua lot faster to
refit the boxes in the tree. The following property of AABBdoals an AABB
tree to be refitted efficiently in a bottom-up manner. Bdie a set of primitives
and S*, S, subsets ofS such thatS" US™ = S, and letB* and B~ be the
smallest AABBs of respectivelg™ andS—, andB, the smallest AABB enclosing
B* U B~. Then,B is also the smallest AABB 08. This property is illustrated
in Figure 3. Of all bounding volume types we have seen so fABBs share this
property only with DOPs.

www.manaraa.com

Y

Figure 3. The smallest AABB of a set of primitives enclosesgmallest AABBs
of the subsets in a partition of the set.

This property of AABBs yields a straightforward method fefitting a hi-
erarchy of AABBs after a deformation. First the bounding &®xf the leaves
are recomputed, after which each parent box is recompuiad tlee boxes of its
children in a strict bottom-up order. This operation mayrelemented as a pos-
torder tree traversal, i.e., for each internal node, th&lobm are visited first, after
which the bounding box is recomputed. However, in order twcthe overhead
of recursive function calls, we implement it differently.

In our implementation the leaves and the internal nodes &ABB tree are
allocated as arrays of nodes. We are able to do this, sinceuthéer of primitives
in the model is static and a priori known. Furthermore, tlee tis built such that
each internal child node’s index number in the array is gretitan its parent’s
index number. In this way, the internal nodes are refittegery by iterating
over the array of internal nodes in reversed order. Sinc#irgfian AABB takes
constant time for both internal nodes and leaves, an AAB8 iseefitted in time
linear to the number of nodes. Refitting an AABB tree of a tgi@nmesh takes
less than 48 arithmetic operations per triangle. Experisibave shown that for
models composed of over 6000 triangles, refitting an AABB tseabout ten times
as fast as rebuilding it.

There is, however, a drawback to this method of refitting. Dueelative
position changes of primitives in the model after a deforargtthe boxes in a
refitted tree may have a higher degree of overlap than theshoxa rebuilt tree.

8

www.manaraa.com

B ™~
5
B B \ B B
(a) Refitted (b) Rebuilt

Figure 4. Refitting vs. rebuilding the model in Figure 3 afiesteformation

Figure 4 illustrates this effect for the model in Figure 3. i§lrer degree of overlap
of boxes in the tree results in more nodes being visited duamintersection test,
and thus, a worse performance for intersection testing.

We observe a higher degree of overlap among the boxes in tedefree
mostly for radical deformations such as excessive twigtgtures blown out of
proportion, or extreme forms of self-intersection. However deformations that
keep the adjacency relation of triangles in a mesh intagt, the mesh is not
torn up, we found no significant performance deteriorationifitersection test-
ing, even for the more severe deformations. This is due tdeittethat the degree
of overlap increases mostly for the boxes that are maintdaimgh in the tree,
whereas most of the boxes that are tested are the ones timaaergined close to
the leaves.

5 Performance

The total cost of testing a pair of models represented by tiognvolume hierar-
chies is expressed in the following cost function [11, 4]:

Tiotal = Np * Cp + Np * Cyp,

9

www.manaraa.com

(a) X-wing (b) Teapot

Figure 5: Two models that where used in our experiments

Tiotar IS the total cost of testing a pair of models for intersection
Np is the number of bounding volume pairs tested for overlap,
Cp is the cost of testing a pair of bounding volumes for overlap,
Np isthe number of primitive pairs tested for intersectiord an
Cp isthe cost of testing a pair of primitives for intersection.

The parameters in the cost function that are affected by hiogce of bounding
volume areNp, Np, andCy. A tight-fitting bounding volume type, such as the
OBB, results in a lowNy andNp, but has a relatively higlEy, whereas an AABB
will result in more tests being performed, but the valu€giwill be lower.

In order to compare the performances of the AABB tree and tBB ®ee, we
have conducted an experiment, in which a pair of models wered randomly in
a bounded space and tested for intersection. The randontatiens of the mod-
els were generated using the method described by Shoem{e ifhe models
were positioned by placing the origin of each model's locabrdinate system
randomly inside a cube. The probability of an intersect®tuned by changing
the size of the cube. For all tests, the probability was sepfroximately 60%.

10

www.manaraa.com

| OBB tree |
Model Np | Cp Tp Np | Cp To | Tiota
Torus 10178961 4.9| 49.7| 197314| 15| 29| 52.6
X-wing || 48890612 4.6 | 223.8| 975217 10| 10.2| 234.0
Teapot || 12025710 4.8| 57.6| 186329, 14| 2.7| 60.3

| AABB tree |
Model Np | Cp Th Np | Cp| Tp| Tiotal
Torus || 32913297| 3.7 | 122.3| 3996806| 7.2 | 28.7 | 151.0

X-wing || 92376250 3.1 | 288.8| 8601433| 7.1 | 61.3| 350.1
Teapot | 25810569 3.3| 84.8| 1874830| 7.4 | 13.9| 98.7

Table 1: Performance of the AABB tree vs. the OBB tree, boihgithe SAT.
Np and N are respectively the total number box and triangle intdisedests,
Cp andC,, the per-test times in microseconds for respectively thearaktriangle
intersection test], = Np * Cp is the total time in seconds spent testing for box
intersectionsTp = Np * Cp is the total time used for triangle intersection tests,
and finallyTiqtq is the total time in seconds for performing 100K intersectiests.

For this experiment we used Gottschalk’s RAPID packagej&ife OBB tree
tests. For the AABB tree tests, we used a modified RAPID, irclvisie removed
the unnecessary matrix operations. We experimented wigetmodels: a torus
composed of 5000 triangles, a slenderly shajetdng space craft composed of
6084 triangles, and the archetypical teapot composed df 8#bhgles, as shown
in Figure 5. Each test performed 100K random placementsraadsection tests,
resulting in approximately 60K collisions for all tested dets. Table 1 shows
the results of the tests for both the OBB tree and the AABB. tiid®e tests were
performed on a Sun UltraSPARC-1 (167MHz), compiled usirgg&NU compiler
with -O2’ optimization.

An AABB tree requires approximately twice as much box ingetgon tests as
an OBB tree, however, the time used for intersection tessimg most cases only
50% longer for AABB trees. The exception here is the torus ehddr which the
AABB tree uses almost three times as much time as the OBB #pparently,
the OBB tree excels in fitting models that have a smooth serénposed of
uniformly distributed primitives. Furthermore, we obseihat, due to its tighter
fit, the OBB tree requires much fewer triangle intersectiests (less than two
triangle intersection tests per placement, for the torustha teapot).

11

www.manaraa.com

| OBB tree |
Model Np | Cp Tp Np | Cp To | Tiota
Torus 13116295 3.7| 47.9 371345 12| 4.4| 52.3
X-wing 65041340 3.4 | 221.4| 2451543| 9.3 | 22.9| 244.3
Teapot 14404588 3.5| 50.8 279987 13| 3.5| 54.3

| AABB tree |
Model Np | Cp Th Np [Cp| Tp| Tiota
Torus 40238149 2.4 | 96.1| 5222836| 7.4 | 38.4| 134.5

X-wing || 121462120 1.9 | 236.7| 13066095 7.0| 91.3| 328.0
Teapot | 30127623 2.1| 62.5| 2214671 7.0|15.6| 78.1

Table 2: Performance of AABB tree vs. OBB tree, both usingShA& lite

We repeated the experiment using a separating axes teststabnly the axes
corresponding to the six facet orientations, referred t&&Elite. The results of
this experiment are shown in Table 2. We see a performancease of about
15% on average for the AABB tree, whereas the change in pedoce for the
OBB tree is only marginal.

We also ran some tests to see how the time used for refittingABBAiree
for a deformable model compares to the intersection testng. We found that
on our testing platform, refitting a triangle mesh composta ¢targe number
(> 1000) of triangles takes 2.9 microseconds per triangle ifistance, for a pair
of models composed of 5000 triangles each, refitting takesi@econds, which
is more than 10 times the amount of time it takes to test theatsddr intersection.
Hence, refitting is likely to become the bottleneck if manytloé models in a
simulated environment are deformed and refitted in eachdraimowever, for
environments with many moving models, in which only a few dedormed in
each frame, refitting will not take much more time in totalrhatersection testing.

We conclude with a comparison of the performance of the AABR vs. the
OBB tree for deformable models. Table 3 presents an overoigive times we
found for operations on the two tree types. We see that fovrdeible models,
the OBB'’s faster intersection test is not easily going to enag for the high cost
of rebuilding the OBB trees, even if only a few of the models deformed. For
these cases, AABB trees, which are refitted in less than 5%eofiine it takes
to rebuild an OBB tree, will yield a better performance, ame therefore the
preferred method for collision detection of deformable misd

12

www.manaraa.com

Operation Torus| X-wing | Teapot

Build an OBB tree 0.35s| 0.46s| 0.27s
Build an AABB tree 0.11s| 0.18s| 0.08s
Refit an AABB tree 15ms| 18 ms| 11 ms

Test a pair of OBB trees || 0.5 ms| 2.3 ms| 0.6 ms
Test a pair of AABB treeg 1.3 ms| 3.3 ms| 0.8 ms

Table 3. Comparing the times for a number of operations

6 Implementation Notes

In SOLID 2.0, AABB trees are used both for rigid and deforneabiodels. In
order to comply with the structures and motions specified RML [1], SOLID
allows, besides translations and rotations, also nontmifecalings on models.
Note that a nonuniform scaling is not considered a defolwnatnd hence, does
not require refitting. However, in order to be able to use moloumly scaled
models, some changes in the AABB overlap test are needed.

Let T(X) = Bx + c be the relative transformation from a model’s local coor-
dinate system to the local coordinate system of another motiereB is a 3x 3
matrix, representing the orientation and scaling, asla vector representing the
translation. For nonuniformly scaled models, we can not ogl the matrixB
being orthogonal, i.eB~1 = BT. However, for the SAT lite bottB andB1,
and their respective absolute values are needed. Henceyr implementation
we compute these four matrices for each intersection testpaiir of models, and
use them for each tested pair of boxes. The added cost ofiaiavenuniformly
scaled models is negligible, sinB ! and its absolute value is computed only
once for each tested pair of models.

Finally, it is worth mentioning that for AABB trees a largeeqgentage of the
time is used for primitive intersection tests than for OBBeis (28% vs. 5%). In
this respect, it might be good idea to use the triangle iptgisn test presented by
Moller in [7], which is shown to be faster than the one useRAPID.

References

[1] G. Bell, R. Carey, and C. Marrin. VRML97: The virtual régl modeling
language. http://www.vrml.org/Specifications/VRML9BIY.

13

www.manaraa.com

[2] S. Gottschalk. RAPID: Robust and accurate polygon fetence detection
system. http://www.cs.unc.edu/"geom/OBB/OBBT.htmB@9software li-
brary.

[3] S. Gottschalk. Separating axis theorem. Technical ReEfF®96-024, Dept.
of Computer Science, UNC Chapel Hill, 1996.

[4] S. Gottschalk, M. C. Lin, and D. Manocha. OBBTree: A hrefacal struc-
ture for rapid interference detection. Rroc. SGGRAPH '96, pages 171—
180, 1996.

[5] P. M. Hubbard. Approximating polyhedra with spherestiore-critical col-
lision detection ACM Transactions on Graphics, 15(3):179-210, July 1996.

[6] J. T. Klosowski, M. Held, J. S. B. Mitchell, H. Sowizralpd K. Zikan.
Efficient collision detection using bounding volume hietaes ofk-DOPSs.
IEEE Transactions on Visualization and Computer Graphics, 4(1):21-36,
1998.

[7] T. Moller. A fast triangle-triangle intersection testlournal of Graphics
Tools, 2(2):25-30, 1997.

[8] I. J. Palmer and R. L. Grimsdale. Collision detection &rimation using
sphere-treesComputer Graphics Forum, 14(2):105-116, 1995.

[9] K. Shoemake. Uniform random rotations. In D. Kirk, edjt@raphics Gems
11, pages 124-132. Academic Press, Boston, MA, 1992.

[10] A. Smith, Y. Kitamura, H. Takemura, and F. Kishino. A gilm and efficient
method for accurate collision detection among deformablghedral ob-
jects in arbitrary motion. IfProc. IEEE Virtual Reality Annual International
Symposium, pages 136-145, 1995.

[11] H. Weghorst, G. Hooper, and D. P. Greenberg. Improvedmdational
methods for ray tracingACM Transactions on Graphics, 3(1):52-69, Jan.
1994.

[12] G. Zachmann. Rapid collision detection by dynamicaligned DOP-trees.
In Proc. IEEE Virtual Reality Annual International Symposium, pages 90—
97, 1998.

14

www.manaraa.com

